EconPapers    
Economics at your fingertips  
 

Absolute penalty and shrinkage estimation in partially linear models

S.M. Enayetur Raheem, S. Ejaz Ahmed and Kjell A. Doksum

Computational Statistics & Data Analysis, 2012, vol. 56, issue 4, 874-891

Abstract: In the context of a partially linear regression model, shrinkage semiparametric estimation is considered based on the Stein-rule. In this framework, the coefficient vector is partitioned into two sub-vectors: the first sub-vector gives the coefficients of interest, i.e., main effects (for example, treatment effects), and the second sub-vector is for variables that may or may not need to be controlled. When estimating the first sub-vector, the best estimate may be obtained using either the full model that includes both sub-vectors, or the reduced model which leaves out the second sub-vector. It is demonstrated that shrinkage estimators which combine two semiparametric estimators computed for the full model and the reduced model outperform the semiparametric estimator for the full model. Using the semiparametric estimate for the reduced model is best when the second sub-vector is the null vector, but this estimator suffers seriously from bias otherwise. The relative dominance picture of suggested estimators is investigated. In particular, suitability of estimating the nonparametric component based on the B-spline basis function is explored. Further, the performance of the proposed estimators is compared with an absolute penalty estimator through Monte Carlo simulation. Lasso and adaptive lasso were implemented for simultaneous model selection and parameter estimation. A real data example is given to compare the proposed estimators with lasso and adaptive lasso estimators.

Keywords: Partially linear model; James–Stein estimator; Absolute penalty estimation; Lasso; Adaptive lasso; B-spline approximation; Semiparametric model; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003525
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:4:p:874-891

DOI: 10.1016/j.csda.2011.09.021

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:874-891