Analyzing longitudinal clinical trial data with nonignorable missingness and unknown missingness reasons
Hui Xie
Computational Statistics & Data Analysis, 2012, vol. 56, issue 5, 1287-1300
Abstract:
Longitudinal clinical trials are often plagued by nonmonotone missingness due to both patient dropout and intermittent missingness. Standard analysis assumes that missingness is ignorable. Because the assumption can be questionable, the sensitivity of inferences to alternative assumptions about missingness needs to be evaluated. This need arises in the analysis of a longitudinal prostate cancer quality-of-life (QoL) clinical trial dataset, in which nonmonotone missingness occurs. The choice of the missing data model is studied in the analysis. A local sensitivity analysis method is then applied to analyze the dataset and to investigate the changes in parameter estimates in the neighborhood of the ignorable model. One advantage of the method is that it surmounts computational difficulty and completely avoids evaluating the high-dimensional integrals in the likelihood due to nonmonotone missingness. Another is that it can be implemented using the standard software without excessive additional computation. The method is especially advantageous for large clinical datasets for which alternative approaches can become computationally prohibitive. In addition, the analysis demonstrates the importance of exploiting information on reasons for missingness. When such information is unavailable for some missingness and therefore the missingness types (i.e., dropout versus intermittent missingness) are unknown, a bound analysis is proposed, combined with genetic algorithms, to account for unknown missingness types. The analysis demonstrates the usefulness of the method as a general approach to evaluating the sensitivity of standard analysis to nonignorable nonmonotone missingness in clinical trials.
Keywords: Bound analysis; Clinical trial; Genetic algorithm; Missing data; Multinomial logit model; Sensitivity analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947310004494
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:5:p:1287-1300
DOI: 10.1016/j.csda.2010.11.021
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().