Objective Bayesian analysis for the normal compositional model
Hannes Kazianka
Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1528-1544
Abstract:
The issue of objective prior specification for the parameters in the normal compositional model is considered within the context of statistical analysis of linearly mixed structures in image processing. In particular, the Jeffreys prior for the vector of fractional abundances in case of a known covariance matrix is derived. If an additional unknown variance parameter is present, the Jeffreys prior and the reference prior are computed and it is proven that the resulting posterior distributions are proper. Markov chain Monte Carlo strategies are proposed to efficiently sample from the posterior distributions and the priors are compared on the grounds of the frequentist properties of the resulting Bayesian inferences. The default Bayesian analysis is illustrated by a dataset taken from fluorescence spectroscopy.
Keywords: Normal compositional model; Spectral unmixing; Jeffreys prior; Reference prior; Frequentist properties (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731100315X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1528-1544
DOI: 10.1016/j.csda.2011.08.016
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().