Modeling the random effects covariance matrix for generalized linear mixed models
Keunbaik Lee,
JungBok Lee,
Joseph Hagan and
Jae Keun Yoo
Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1545-1551
Abstract:
Generalized linear mixed models (GLMMs) are commonly used to analyze longitudinal categorical data. In these models, we typically assume that the random effects covariance matrix is constant across the subject and is restricted because of its high dimensionality and its positive definiteness. However, the covariance matrix may differ by measured covariates in many situations, and ignoring this heterogeneity can result in biased estimates of the fixed effects. In this paper, we propose a heterogenous random effects covariance matrix, which depends on covariates, obtained using the modified Cholesky decomposition. This decomposition results in parameters that can be easily modeled without concern that the resulting estimator will not be positive definite. The parameters have a sensible interpretation. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using our proposed model.
Keywords: Cholesky decomposition; Longitudinal data; Heterogeneity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003306
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1545-1551
DOI: 10.1016/j.csda.2011.09.011
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().