Selecting the number of components in principal component analysis using cross-validation approximations
Julie Josse and
François Husson
Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1869-1879
Abstract:
Cross-validation is a tried and tested approach to select the number of components in principal component analysis (PCA), however, its main drawback is its computational cost. In a regression (or in a non parametric regression) setting, criteria such as the general cross-validation one (GCV) provide convenient approximations to leave-one-out cross-validation. They are based on the relation between the prediction error and the residual sum of squares weighted by elements of a projection matrix (or a smoothing matrix). Such a relation is then established in PCA using an original presentation of PCA with a unique projection matrix. It enables the definition of two cross-validation approximation criteria: the smoothing approximation of the cross-validation criterion (SACV) and the GCV criterion. The method is assessed with simulations and gives promising results.
Keywords: PCA; Number of components; Cross-validation; Smoothing matrix; Generalized cross-validation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311004099
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1869-1879
DOI: 10.1016/j.csda.2011.11.012
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().