A combined overdispersed and marginalized multilevel model
Samuel Iddi and
Geert Molenberghs
Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1944-1951
Abstract:
Overdispersion and correlation are two features often encountered when modeling non-Gaussian dependent data, usually as a function of known covariates. Methods that ignore the presence of these phenomena are often in jeopardy of leading to biased assessment of covariate effects. The beta-binomial and negative binomial models are well known in dealing with overdispersed data for binary and count data, respectively. Similarly, generalized estimating equations (GEE) and the generalized linear mixed models (GLMM) are popular choices when analyzing correlated data. A so-called combined model simultaneously acknowledges the presence of dependency and overdispersion by way of two separate sets of random effects. A marginally specified logistic-normal model for longitudinal binary data which combines the strength of the marginal and hierarchical models has been previously proposed. These two are brought together to produce a marginalized longitudinal model which brings together the comfort of marginally meaningful parameters and the ease of allowing for overdispersion and correlation. Apart from model formulation, estimation methods are discussed. The proposed model is applied to two clinical studies and compared to the existing approach. It turns out that by explicitly allowing for overdispersion random effect, the model significantly improves.
Keywords: Combined model; Correlation; Overdispersion; Partial marginalization (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311004191
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1944-1951
DOI: 10.1016/j.csda.2011.11.021
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().