EconPapers    
Economics at your fingertips  
 

Robust fitting of mixture regression models

Xiuqin Bai, Weixin Yao and John E. Boyer

Computational Statistics & Data Analysis, 2012, vol. 56, issue 7, 2347-2359

Abstract: The existing methods for fitting mixture regression models assume a normal distribution for error and then estimate the regression parameters by the maximum likelihood estimate (MLE). In this article, we demonstrate that the MLE, like the least squares estimate, is sensitive to outliers and heavy-tailed error distributions. We propose a robust estimation procedure and an EM-type algorithm to estimate the mixture regression models. Using a Monte Carlo simulation study, we demonstrate that the proposed new estimation method is robust and works much better than the MLE when there are outliers or the error distribution has heavy tails. In addition, the proposed robust method works comparably to the MLE when there are no outliers and the error is normal. A real data application is used to illustrate the success of the proposed robust estimation procedure.

Keywords: EM algorithm; Mixture regression models; Outliers; Robust regression (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312000369
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:7:p:2347-2359

DOI: 10.1016/j.csda.2012.01.016

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2347-2359