EconPapers    
Economics at your fingertips  
 

Bayesian variable selection for logistic mixed model with nonparametric random effects

Mingan Yang

Computational Statistics & Data Analysis, 2012, vol. 56, issue 9, 2663-2674

Abstract: In analyzing correlated data or clustered data with linear or logistic mixed effects model, one commonly assumes that the random effects follow a normal distribution with mean zero. However, this assumption might not be appropriate in many cases. In particular, substantial violation of normality assumption might potentially impact the subset selection of variables in these models. In this article, we address the problem of joint selection of both fixed and random effects and bias control for random effects in nonparametric settings. An efficient Bayesian variable selection is implemented using a stochastic search Gibbs sampler to allow both fixed and random effects to be dropped effectively out of the model. The approach is illustrated using a simulation study and a real data example.

Keywords: Dirichlet process; Nonparametric Bayes; Variable selection; Random effects; Mixed effects model; Stochastic search (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731100449X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:9:p:2663-2674

DOI: 10.1016/j.csda.2011.12.014

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2663-2674