Widely linear prediction for transfer function models based on the infinite past
Jesús Navarro-Moreno,
Javier Moreno-Kaiser,
Rosa María Fernández-Alcalá and
Juan Carlos Ruiz-Molina
Computational Statistics & Data Analysis, 2013, vol. 58, issue C, 139-146
Abstract:
The problem of widely linear (WL) prediction for both WL ARMA models and WL transfer function models on the basis of infinite past information is studied. A recursive algorithm to obtain a suboptimum predictor for WL ARMA systems is first given. Then this algorithm is used to develop another recursive algorithm which performs WL prediction for transfer function models. The suggested solutions become an alternative to the WL prediction based on a finite number of observations provided the size of the time series is sufficiently large.
Keywords: Prediction theory; Widely linear ARMA models; Widely linear processing; Widely linear transfer function models (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947310004482
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:58:y:2013:i:c:p:139-146
DOI: 10.1016/j.csda.2010.11.020
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().