Simultaneous confidence intervals for multiple comparisons among expected values of log-normal variables
Frank Schaarschmidt
Computational Statistics & Data Analysis, 2013, vol. 58, issue C, 265-275
Abstract:
In biological and medical research, continuous, strictly positive, right-skewed data, possibly with heterogeneous variances, are common, and can be described by log-normal distributions. In experiments involving multiple treatments in a one-way layout, various sets of multiple comparisons among the treatments and corresponding simultaneous confidence intervals can be of interest. The focus is on multiple contrasts of the expected values of the treatments. Previously published methods based on normal approximations and generalized pivotal quantities are extended to the case of multiple contrasts. These methods are evaluated in a simulation study that involves comparisons to a control group, all pairwise comparisons and, to illustrate more general multiple contrast types, a non-standard type of contrast matrix. A method based on generalized pivotal quantities is recommended because it is superior to all other methods in terms of simultaneous coverage probability and because the type-I-errors are distributed almost equally between lower and upper confidence bounds. Methods based on normal approximations are found to be very liberal and biased with respect to directional type-I-errors. These methods are illustrated with an example from pharmaceutical research.
Keywords: Multiple contrasts; One-way layout; Coverage probability; Generalized pivotal quantity (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312003143
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:58:y:2013:i:c:p:265-275
DOI: 10.1016/j.csda.2012.08.011
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().