EconPapers    
Economics at your fingertips  
 

A semiparametric approach to source separation using independent component analysis

Ani Eloyan and Sujit K. Ghosh

Computational Statistics & Data Analysis, 2013, vol. 58, issue C, 383-396

Abstract: Data processing and source identification using lower dimensional hidden structure plays an essential role in many fields of applications, including image processing, neural networks, genome studies, signal processing and other areas where large datasets are often encountered. One of the common methods for source separation using lower dimensional structure involves the use of Independent Component Analysis, which is based on a linear representation of the observed data in terms of independent hidden sources. The problem thus involves the estimation of the linear mixing matrix and the densities of the independent hidden sources. However, the solution to the problem depends on the identifiability of the sources. This paper first presents a set of sufficient conditions to establish the identifiability of the sources and the mixing matrix using moment restrictions of the hidden source variables. Under such sufficient conditions a semi-parametric maximum likelihood estimate of the mixing matrix is obtained using a class of mixture distributions. The consistency of our proposed estimate is established under additional regularity conditions. The proposed method is illustrated and compared with existing methods using simulated and real datasets.

Keywords: Constrained EM-algorithm; Mixture density estimation; Source identification (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312003416
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:58:y:2013:i:c:p:383-396

DOI: 10.1016/j.csda.2012.09.012

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:383-396