Estimation in linear regression models with measurement errors subject to single-indexed distortion
Jun Zhang,
Yujie Gai and
Ping Wu
Computational Statistics & Data Analysis, 2013, vol. 59, issue C, 103-120
Abstract:
In this paper, we consider statistical inference for linear regression models when neither the response nor the predictors can be directly observed, but are measured with errors in a multiplicative fashion and distorted as single index models of observable confounding variables. We propose a semiparametric profile least squares estimation procedure to estimate the single index. Then we develop a global weighted least squares estimation procedure for parameters of linear regression models via the varying coefficient models. Asymptotic properties of the proposed estimators are established. The results combined with consistent estimators for the asymptotic variance can be employed to test whether the targeted parameters in the single index and linear regression models are significant. Finite-sample performance of the proposed estimators is assessed by simulation experiments. The proposed methods are also applied to a dataset from a Pima Indian diabetes data study.
Keywords: Confounding variables; Measurement errors; Profile least squares; Single index; Varying coefficient models (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312003519
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:59:y:2013:i:c:p:103-120
DOI: 10.1016/j.csda.2012.10.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().