EconPapers    
Economics at your fingertips  
 

Efficient maximum likelihood estimation of multiple membership linear mixed models, with an application to educational value-added assessments

Andrew T. Karl, Yan Yang and Sharon L. Lohr

Computational Statistics & Data Analysis, 2013, vol. 59, issue C, 13-27

Abstract: The generalized persistence (GP) model, developed in the context of estimating “value added” by individual teachers to their students’ current and future test scores, is one of the most flexible value-added models in the literature. Although developed in the educational setting, the GP model can potentially be applied to any structure where each sequential response of a lower-level unit may be associated with a different higher-level unit, and the effects of the higher-level units may persist over time. The flexibility of the GP model, however, and its multiple membership random effects structure lead to computational challenges that have limited the model’s availability. We develop an EM algorithm to compute maximum likelihood estimates efficiently for the GP model, making use of the sparse structure of the random effects and error covariance matrices. The algorithm is implemented in the package GPvam in R statistical software. We give examples of the computations and illustrate the gains in computational efficiency achieved by our estimation procedure.

Keywords: EM algorithm; Generalized persistence model; Sparse matrices; Unbalanced data; Variable persistence model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312003544
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:59:y:2013:i:c:p:13-27

DOI: 10.1016/j.csda.2012.10.004

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:59:y:2013:i:c:p:13-27