Two algorithms for fitting constrained marginal models
R.J. Evans and
A. Forcina
Computational Statistics & Data Analysis, 2013, vol. 66, issue C, 1-7
Abstract:
The two main algorithms that have been considered for fitting constrained marginal models to discrete data, one based on Lagrange multipliers and the other on a regression model, are studied in detail. It is shown that the updates produced by the two methods are identical, but that the Lagrangian method is more efficient in the case of identically distributed observations. A generalization is given of the regression algorithm for modelling the effect of exogenous individual-level covariates, a context in which the use of the Lagrangian algorithm would be infeasible for even moderate sample sizes. An extension of the method to likelihood-based estimation under L1-penalties is also considered.
Keywords: Categorical data; L1-penalty; Marginal log-linear model; Maximum likelihood; Non-linear constraint (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313000455
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:66:y:2013:i:c:p:1-7
DOI: 10.1016/j.csda.2013.02.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().