Some properties of multivariate INAR(1) processes
Xanthi Pedeli and
Dimitris Karlis
Computational Statistics & Data Analysis, 2013, vol. 67, issue C, 213-225
Abstract:
INteger-valued AutoRegressive (INAR) processes are common choices for modeling non-negative discrete valued time series. In this framework and motivated by the frequent occurrence of multivariate count time series data in several different disciplines, a generalized specification of the bivariate INAR(1) (BINAR(1)) model is considered. In this new, full BINAR(1) process, dependence between the two series stems from two sources simultaneously. The main focus is on the specific parametric case that arises under the assumption of a bivariate Poisson distribution for the innovations of the process. As it is shown, such an assumption gives rise to a Hermite BINAR(1) process. The method of conditional maximum likelihood is suggested for the estimation of its unknown parameters. A short application on financial count data illustrates the model.
Keywords: Autocorrelation; Bivariate Hermite; Bivariate Poisson; Full BINAR(1) (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002065
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:67:y:2013:i:c:p:213-225
DOI: 10.1016/j.csda.2013.05.019
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().