Approximate conditional least squares estimation of a nonlinear state-space model via an unscented Kalman filter
Kwang Woo Ahn and
Kung-Sik Chan
Computational Statistics & Data Analysis, 2014, vol. 69, issue C, 243-254
Abstract:
The problem of estimating a nonlinear state-space model whose state process is driven by an ordinary differential equation (ODE) or a stochastic differential equation (SDE), with discrete-time data is studied. A new estimation method is proposed based on minimizing the conditional least squares (CLS) with the conditional mean function computed approximately via the unscented Kalman filter (UKF). Conditions are derived for the UKF–CLS estimator to preserve the limiting properties of the exact CLS estimator, namely, consistency and asymptotic normality, under the framework of infill asymptotics, i.e. sampling is increasingly dense over a fixed domain. The efficacy of the proposed method is demonstrated by simulation and a real application.
Keywords: Nonlinear time series; SIR model; State-space model; Unscented Kalman filter (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002843
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:69:y:2014:i:c:p:243-254
DOI: 10.1016/j.csda.2013.07.038
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().