On the choice of test for a unit root when the errors are conditionally heteroskedastic
Joakim Westerlund
Computational Statistics & Data Analysis, 2014, vol. 69, issue C, 40-53
Abstract:
It is well known that in the context of the classical regression model with heteroskedastic errors, while ordinary least squares (OLS) is not efficient, the weighted least squares (WLS) and quasi-maximum likelihood (QML) estimators that utilize the information contained in the heteroskedasticity are. In the context of unit root testing with conditional heteroskedasticity, while intuition suggests that a similar result should apply, the relative performance of the tests associated with the OLS, WLS and QML estimators is not well understood. In particular, while QML has been shown to be able to generate more powerful tests than OLS, not much is known regarding the relative performance of the WLS-based test. By providing an in-depth comparison of the tests, the current paper fills this gap in the literature.
Keywords: Unit root test; Conditional heteroskedasticity; ARCH (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002673
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:69:y:2014:i:c:p:40-53
DOI: 10.1016/j.csda.2013.07.022
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().