Test for homogeneity in gamma mixture models using likelihood ratio
Tony Siu Tung Wong and
Wai Keung Li
Computational Statistics & Data Analysis, 2014, vol. 70, issue C, 127-137
Abstract:
A testing problem of homogeneity in gamma mixture models is studied. It is found that there is a proportion of the penalized likelihood ratio test statistic that degenerates to zero. The limiting distribution of this statistic is found to be the chi-bar-square distributions. The degeneration is due to the negative-definiteness of a complicated random matrix, depending on the shape parameter under the null hypothesis. In light of this dependency, bounds on the distribution are introduced and a weighted average procedure is proposed. Simulation suggests that the results are accurate and consistent, and that the asymptotic result applies to the maximum likelihood estimator, obtained via an Expectation–Maximization algorithm.
Keywords: Chi-bar-square distributions; Gamma mixture; Likelihood ratio; Maximum likelihood; Negative-definite (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003162
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:70:y:2014:i:c:p:127-137
DOI: 10.1016/j.csda.2013.09.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().