An EM algorithm for the model fitting of Markovian binary trees
Sophie Hautphenne and
Mark Fackrell
Computational Statistics & Data Analysis, 2014, vol. 70, issue C, 19-34
Abstract:
Markovian binary trees form a class of continuous-time branching processes where the lifetime and reproduction epochs of individuals are controlled by an underlying Markov process. An Expectation–Maximization (EM) algorithm is developed to estimate the parameters of the Markov process from the continuous observation of some populations, first with information about which individuals reproduce or die (the distinguishable case), and second without this information (the indistinguishable case). The performance of the EM algorithm is illustrated with some numerical examples. Fits resulting from the distinguishable case are shown not to be significantly better than fits resulting from the indistinguishable case using some goodness of fit measures.
Keywords: Branching process; Markovian binary tree; Parameter estimation; EM algorithm (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003125
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:70:y:2014:i:c:p:19-34
DOI: 10.1016/j.csda.2013.08.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().