EconPapers    
Economics at your fingertips  
 

Factor analysis parameter estimation from incomplete data

W.J.J. Roberts

Computational Statistics & Data Analysis, 2014, vol. 70, issue C, 61-66

Abstract: An expectation–maximization (EM) algorithm for factor analysis parameter estimation when observations are missing is developed. In contrast to existing EM algorithms for this problem, the algorithm here is developed assuming the missing observations are not part of the complete data in the EM formulation. The resulting algorithm provides increased computational efficiency through sparse matrix operations. The algorithm is demonstrated on two sparse, high-dimensional data sets that are prohibitively large for existing algorithms: the Netflix movie recommendation data set and the Yahoo! musical item data set. The resulting factor models are applied to predict missing values using conditional mean estimation, achieving root mean square errors of 0.9001 and 24.08 on the Netflix and Yahoo! data sets, respectively.

Keywords: Recommendation; Expectation–maximization algorithm; Conditional mean (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003150
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:70:y:2014:i:c:p:61-66

DOI: 10.1016/j.csda.2013.08.018

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:70:y:2014:i:c:p:61-66