EconPapers    
Economics at your fingertips  
 

Integral approximations for computing optimum designs in random effects logistic regression models

C. Tommasi, J.M. Rodríguez-Díaz and M.T. Santos-Martín

Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 1208-1220

Abstract: In the context of nonlinear models, the analytical expression of the Fisher information matrix is essential to compute optimum designs. The Fisher information matrix of the random effects logistic regression model is proved to be equivalent to the information matrix of the linearized model, which depends on some integrals. Some algebraic approximations for these integrals are proposed, which are consistent with numerical integral approximations but much faster to be evaluated. Therefore, these algebraic integral approximations are very useful from a computational point of view. Locally D-, A-, c-optimum designs and the optimum design to estimate a percentile are computed for the univariate logistic regression model with Gaussian random effects. Since locally optimum designs depend on a chosen nominal value for the parameter vector, a Bayesian D-optimum design is also computed. In order to find Bayesian optimum designs it is essential to apply the proposed integral approximations, because the use of numerical approximations makes the computation of these optimum designs very slow.

Keywords: Binary regression model; Fisher information matrix; Information matrix; Optimal design of experiments; Influence function (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731200223X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:1208-1220

DOI: 10.1016/j.csda.2012.05.024

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:1208-1220