Zero-inflated Poisson regression mixture model
Hwa Kyung Lim,
Wai Keung Li and
Philip L.H. Yu
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 151-158
Abstract:
Excess zeros and overdispersion are common phenomena that limit the use of traditional Poisson regression models for modeling count data. Both excess zeros and overdispersion caused by unobserved heterogeneity are accounted for by the proposed zero-inflated Poisson (ZIP) regression mixture model. To estimate the parameters of the model, an EM algorithm with an embedded iteratively reweighted least squares method is implemented. The parameter estimation performance of the proposed model is evaluated through simulation studies. The ZIP regression mixture model is applied to the DMFT index dataset, which contains excess zeros and overdispersion. Comparisons of several other models commonly used for such data with the ZIP regression mixture model show that, in general, the latter model fits the data well.
Keywords: Zero-inflation; Heterogeneity; Finite mixture model; Poisson; EM algorithm (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002338
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:151-158
DOI: 10.1016/j.csda.2013.06.021
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().