Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application
Lu, Zhenqiu (Laura) and
Zhiyong Zhang
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 220-240
Abstract:
Challenges in the analyses of growth mixture models include missing data, outliers, estimation, and model selection. Four non-ignorable missingness models to recover the information due to missing data, and three robust models to reduce the effect of non-normality are proposed. A full Bayesian method is implemented by means of data augmentation algorithm and Gibbs sampling procedure. Model selection criteria are also proposed in the Bayesian context. Simulation studies are then conducted to evaluate the performances of the models, the Bayesian estimation method, and selection criteria under different situations. The application of the models is demonstrated through the analysis of education data on children’s mathematical ability development. The models can be widely applied to longitudinal analyses in medical, psychological, educational, and social research.
Keywords: Growth mixture models; Non-ignorable missing data; Robust methods; Bayesian method; Model selecting criteria (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002818
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:220-240
DOI: 10.1016/j.csda.2013.07.036
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().