EconPapers    
Economics at your fingertips  
 

Optimal sequential designs in phase I studies

David Azriel

Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 288-297

Abstract: Phase I clinical trials are conducted in order to find the maximum tolerated dose of a given drug out of a set of doses, usually finite. In general, once a formal target function and a suitable probability structure are defined, optimization of sequential studies can theoretically be achieved using backward induction. This is a computationally heavy task and most of the proposed methods can be regarded as “myopic” strategies with respect to a certain loss function. Such designs are computationally feasible, but are not globally optimal. A Dynamic Programming algorithm that overcomes such computational difficulties is presented. It computes the global optimal designs with respect to different loss functions, which represent different purposes of a phase I study. Though the optimal designs provide an improvement over the standard designs, the improvement is not very significant. The expected loss of the global optimal design is about 3% (at most) less than in the “myopic” policies in the specific probability structure that have been considered. This is important as computationally feasible and simple algorithms provide designs that are very close to being optimal.

Keywords: Dynamic programming; Optimal designs; Phase I studies; Sequential methods (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313001837
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:288-297

DOI: 10.1016/j.csda.2013.05.010

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:288-297