Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization
Anne Sabourin and
Philippe Naveau
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 542-567
Abstract:
The probabilistic framework of extreme value theory is well-known: the dependence structure of large events is characterized by an angular measure on the positive orthant of the unit sphere. The family of these angular measures is non-parametric by nature. Nonetheless, any angular measure may be approached arbitrarily well by a mixture of Dirichlet distributions. The semi-parametric Dirichlet mixture model for angular measures is theoretically valid in arbitrary dimension, but the original parametrization is subject to a moment constraint making Bayesian inference very challenging in dimension greater than three. A new unconstrained parametrization is proposed. This allows for a natural prior specification as well as a simple implementation of a reversible-jump MCMC. Posterior consistency and ergodicity of the Markov chain are verified and the algorithm is tested up to dimension five. In this non identifiable setting, convergence monitoring is performed by integrating the sampled angular densities against Dirichlet test functions.
Keywords: Multivariate extremes; Semi parametric Bayesian inference; Mixture models; Reversible-jump algorithm (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313001680
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:542-567
DOI: 10.1016/j.csda.2013.04.021
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().