EconPapers    
Economics at your fingertips  
 

Analysis of feature selection stability on high dimension and small sample data

David Dernoncourt, Blaise Hanczar and Jean-Daniel Zucker

Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 681-693

Abstract: Feature selection is an important step when building a classifier on high dimensional data. As the number of observations is small, the feature selection tends to be unstable. It is common that two feature subsets, obtained from different datasets but dealing with the same classification problem, do not overlap significantly. Although it is a crucial problem, few works have been done on the selection stability. The behavior of feature selection is analyzed in various conditions, not exclusively but with a focus on t-score based feature selection approaches and small sample data. The analysis is in three steps: the first one is theoretical using a simple mathematical model; the second one is empirical and based on artificial data; and the last one is based on real data. These three analyses lead to the same results and give a better understanding of the feature selection problem in high dimension data.

Keywords: Feature selection; Small sample; Stability; Low N/D ratio (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002570
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:681-693

DOI: 10.1016/j.csda.2013.07.012

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:681-693