Model selection and model averaging after multiple imputation
Michael Schomaker and
Christian Heumann
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 758-770
Abstract:
Model selection and model averaging are two important techniques to obtain practical and useful models in applied research. However, it is now well-known that many complex issues arise, especially in the context of model selection, when the stochastic nature of the selection process is ignored and estimates, standard errors, and confidence intervals are calculated as if the selected model was known a priori. While model averaging aims to incorporate the uncertainty associated with the model selection process by combining estimates over a set of models, there is still some debate over appropriate interpretation and confidence interval construction. These problems become even more complex in the presence of missing data and it is currently not entirely clear how to proceed. To deal with such situations, a framework for model selection and model averaging in the context of missing data is proposed. The focus lies on multiple imputation as a strategy to deal with the missingness: a consequent combination with model averaging aims to incorporate both the uncertainty associated with the model selection and with the imputation process. Furthermore, the performance of bootstrapping as a flexible extension to our framework is evaluated. Monte Carlo simulations are used to reveal the nature of the proposed estimators in the context of the linear regression model. The practical implications of our approach are illustrated by means of a recent survival study on sputum culture conversion in pulmonary tuberculosis.
Keywords: Akaike’s information criterion; Bootstrap; Frequentist model averaging; Linear regression; Missing data; Survival analysis (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731300073X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:758-770
DOI: 10.1016/j.csda.2013.02.017
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).