A hierarchical modeling approach for clustering probability density functions
Daniela G. Calò,
Angela Montanari and
Cinzia Viroli
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 79-91
Abstract:
The problem of clustering probability density functions is emerging in different scientific domains. The methods proposed for clustering probability density functions are mainly focused on univariate settings and are based on heuristic clustering solutions. New aspects of the problem associated with the multivariate setting and a model-based perspective are investigated. The novel approach relies on a hierarchical mixture modeling of the data. The method is introduced in the univariate context and then extended to multivariate densities by means of a factorial model performing dimension reduction. Model fitting is carried out using an EM-algorithm. The proposed method is illustrated through simulated experiments and applied to two real data sets in order to compare its performance with alternative clustering strategies.
Keywords: Maximum likelihood; Mixture modeling; Pdf clustering (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313001540
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:79-91
DOI: 10.1016/j.csda.2013.04.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().