Time-efficient estimation of conditional mutual information for variable selection in classification
Diman Todorov and
Rossi Setchi
Computational Statistics & Data Analysis, 2014, vol. 72, issue C, 105-127
Abstract:
An algorithm is proposed for calculating correlation measures based on entropy. The proposed algorithm allows exhaustive exploration of variable subsets on real data. Its time efficiency is demonstrated by comparison against three other variable selection methods based on entropy using 8 data sets from various domains as well as simulated data. The method is applicable to discrete data with a limited number of values making it suitable for medical diagnostic support, DNA sequence analysis, psychometry and other domains.
Keywords: Variable selection; Conditional mutual information; Discrete data; Parallel algorithm (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003940
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:72:y:2014:i:c:p:105-127
DOI: 10.1016/j.csda.2013.10.026
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().