Recursive partitioning for missing data imputation in the presence of interaction effects
L.L. Doove,
S. Van Buuren and
E. Dusseldorp
Computational Statistics & Data Analysis, 2014, vol. 72, issue C, 92-104
Abstract:
Standard approaches to implement multiple imputation do not automatically incorporate nonlinear relations like interaction effects. This leads to biased parameter estimates when interactions are present in a dataset. With the aim of providing an imputation method which preserves interactions in the data automatically, the use of recursive partitioning as imputation method is examined. Three recursive partitioning techniques are implemented in the multiple imputation by chained equations framework. It is investigated, using simulated data, whether recursive partitioning creates appropriate variability between imputations and unbiased parameter estimates with appropriate confidence intervals. It is concluded that, when interaction effects are present in a dataset, substantial gains are possible by using recursive partitioning for imputation compared to standard applications. In addition, it is shown that the potential of recursive partitioning imputation approaches depends on the relevance of a possible interaction effect, the correlation structure of the data, and the type of possible interaction effect present in the data.
Keywords: CART; Classification and regression trees; Interaction problem; MICE; Nonlinear relations; Random forests (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003939
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:72:y:2014:i:c:p:92-104
DOI: 10.1016/j.csda.2013.10.025
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().