Nonparametric tests for panel count data with unequal observation processes
Yang Li,
Hui Zhao,
Jianguo Sun and
KyungMann Kim
Computational Statistics & Data Analysis, 2014, vol. 73, issue C, 103-111
Abstract:
Nonparametric comparison for panel count data is discussed. For the situation, most available approaches require that all subjects have the same observation process. However, such an assumption may not hold in reality. To address this, a new class of test procedures are proposed that allow unequal observation processes for the subjects from different treatment groups. The method applies to both univariate and multivariate panel count data. In addition, the asymptotic normality of the proposed test statistics is established and a simulation study is conducted to evaluate the finite sample properties of the proposed approach. The simulation results show that the proposed procedures work well for practical situations and in particular for sparsely distributed data. They are applied to a set of panel count data arising from a skin cancer study.
Keywords: Nonparametric comparison; Unequal observation processes; Univariate and multivariate panel count data; Sparsely distributed data (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313004520
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:73:y:2014:i:c:p:103-111
DOI: 10.1016/j.csda.2013.11.014
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().