Improving mixture tree construction using better EM algorithms
Chen, Shu-Chuan (Grace) and
Bruce Lindsay
Computational Statistics & Data Analysis, 2014, vol. 74, issue C, 17-25
Abstract:
This paper is concerned with hierarchical clustering of long binary sequence data. We propose two alternative improvements of the EM algorithm used in Chen and Lindsay (2006). One is the FixEM. It is just the regular EM but we no longer update the weights πs used in the ancestral mixture models. The other is the ModalEM. In this we cluster data according to the modes of an estimated density function for the data. In order to compare these methods with each other and other popular hierarchical clustering methods, we use a data example from the international HapMap project. We compare the speed and the ability of these methods to separate out true clusters. In addition, simulation studies are performed to compare the efficiency and accuracy of these methods. Our conclusion is that the new EM methods are far superior to the original, and that both provide useful alternatives to other standard clustering methods.
Keywords: Mixture models; Mutation kernel; Phylogenetics tree; Cluster analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313004489
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:74:y:2014:i:c:p:17-25
DOI: 10.1016/j.csda.2013.11.010
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().