Least squares estimation of a k-monotone density function
Chew-Seng Chee and
Yong Wang
Computational Statistics & Data Analysis, 2014, vol. 74, issue C, 209-216
Abstract:
The fact that a k-monotone density can be defined by means of a mixing distribution makes its estimation feasible within the framework of mixture models. It turns the problem naturally into estimating a mixing distribution, nonparametrically. This paper studies the least squares approach to solving this problem and presents two algorithms for computing the estimate. The resulting mixture density is hence just the least squares estimate of the k-monotone density. Through simulated and real data examples, the usefulness of the least squares density estimator is demonstrated.
Keywords: k-monotone density; Least squares; Maximum likelihood; Nonparametric mixture model; Shape constraints (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000188
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:74:y:2014:i:c:p:209-216
DOI: 10.1016/j.csda.2014.01.007
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().