Computing confidence intervals for log-concave densities
Mahdis Azadbakhsh,
Hanna Jankowski and
Xin Gao
Computational Statistics & Data Analysis, 2014, vol. 75, issue C, 248-264
Abstract:
In Balabdaoui, Rufibach, and Wellner (2009), pointwise asymptotic theory was developed for the nonparametric maximum likelihood estimator of a log-concave density. Here, the practical aspects of their results are explored. Namely, the theory is used to develop pointwise confidence intervals for the true log-concave density. To do this, the quantiles of the limiting process are estimated and various ways of estimating the nuisance parameter appearing in the limit are studied. The finite sample size behavior of these estimated confidence intervals is then studied via a simulation study of the empirical coverage probabilities.
Keywords: Nonparametric density estimation; Log-concave; Maximum likelihood; Confidence interval (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000334
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:75:y:2014:i:c:p:248-264
DOI: 10.1016/j.csda.2014.01.020
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().