EconPapers    
Economics at your fingertips  
 

Infinite-order, long-memory heterogeneous autoregressive models

Eunju Hwang and Dong Wan Shin

Computational Statistics & Data Analysis, 2014, vol. 76, issue C, 339-358

Abstract: We develop an infinite-order extension of the HAR-RV model, denoted by HAR(∞). We show that the autocorrelation function of the model is algebraically decreasing and thus the model is a long-memory model if and only if the HAR coefficients decrease exponentially. For a finite sample, a prediction is made using coefficients estimated by ordinary least squares (OLS) fitting for a finite-order model, HAR(p), say. We show that the OLS estimator (OLSE) is consistent and asymptotically normal. The approximate one-step-ahead prediction mean-square error is derived. Analysis shows that the prediction error is mainly due to estimation of the HAR(p) coefficients rather than to errors made in approximating HAR(∞) by HAR(p). This result provides a theoretical justification for wide use of the HAR(3) model in predicting long-memory realized volatility. The theoretical result is confirmed by a finite-sample Monte Carlo experiment for a real data set.

Keywords: HAR-RV model; Least squares estimator; Asymptotic property; Prediction mean-squared error; Realized volatility (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731300306X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:76:y:2014:i:c:p:339-358

DOI: 10.1016/j.csda.2013.08.009

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:339-358