EconPapers    
Economics at your fingertips  
 

Solving norm constrained portfolio optimization via coordinate-wise descent algorithms

Yu-Min Yen and Tso-Jung Yen

Computational Statistics & Data Analysis, 2014, vol. 76, issue C, 737-759

Abstract: A fast method based on coordinate-wise descent algorithms is developed to solve portfolio optimization problems in which asset weights are constrained by lq norms for 1≤q≤2. The method is first applied to solve a minimum variance portfolio (mvp) optimization problem in which asset weights are constrained by a weighted l1 norm and a squared l2 norm. Performances of the weighted norm penalized mvp are examined with two benchmark data sets. When the sample size is not large in comparison with the number of assets, the weighted norm penalized mvp tends to have a lower out-of-sample portfolio variance, lower turnover rate, fewer numbers of active constituents and shortsale positions, but higher Sharpe ratio than the one without such penalty. Several extensions of the proposed method are illustrated; in particular, an efficient algorithm for solving a portfolio optimization problem in which assets are allowed to be chosen grouply is derived.

Keywords: Minimum variance portfolio; Weighted norm constraint; Berhu penalty; Grouped portfolio selection (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002557
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:76:y:2014:i:c:p:737-759

DOI: 10.1016/j.csda.2013.07.010

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:737-759