Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models
Keunbaik Lee and
Jae Keun Yoo
Computational Statistics & Data Analysis, 2014, vol. 80, issue C, 111-116
Abstract:
Random effects in generalized linear mixed models (GLMM) are used to explain the serial correlation of the longitudinal categorical data. Because the covariance matrix is high dimensional and should be positive definite, its structure is assumed to be constant over subjects and to be restricted such as AR(1) structure. However, these assumptions are too strong and can result in biased estimates of the fixed effects. In this paper we propose a Bayesian modeling for the GLMM with regression models for parameters of the random effects covariance matrix using a moving average Cholesky decomposition which factors the covariance matrix into moving average (MA) parameters and IVs. We analyze lung cancer data using our proposed model.
Keywords: Cholesky decomposition; Longitudinal data; Heterogeneity (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731400187X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:80:y:2014:i:c:p:111-116
DOI: 10.1016/j.csda.2014.06.016
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().