EconPapers    
Economics at your fingertips  
 

A Bayesian approach to estimating animal density from binary acoustic transects

Julie Horrocks and Matthew Rueffer

Computational Statistics & Data Analysis, 2014, vol. 80, issue C, 17-25

Abstract: A Bayesian model is proposed for estimating abundance or density of animals from passive acoustic binary data. The data are collected at points along one or more transects, and the points are spaced so that a single individual can be heard multiple times. Thus successive data points are dependent and this dependence is exploited to simultaneously estimate density, range of detection and probability of detection. The data are assumed to follow a homogeneous Poisson process. The Bayesian model combines a prior distribution for the model parameters, with a second-order Markov approximation to the likelihood. Sensitivity of the model to choice of priors is investigated. The method is illustrated using acoustic data from a survey of sperm whales (Physeter macrocephalus).

Keywords: Abundance; Animal density; Binary time series; Bayesian methods; Passive acoustic surveys; Second-order Markov approximation; Spatial Poisson process; Multiple transects (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314001765
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:80:y:2014:i:c:p:17-25

DOI: 10.1016/j.csda.2014.06.005

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:80:y:2014:i:c:p:17-25