Selection of fixed effects in high dimensional linear mixed models using a multicycle ECM algorithm
Florian Rohart,
Magali San Cristobal and
Béatrice Laurent
Computational Statistics & Data Analysis, 2014, vol. 80, issue C, 209-222
Abstract:
Linear mixed models are especially useful when observations are grouped. In a high dimensional setting however, selecting the fixed effect coefficients in these models is mandatory as classical tools are not performing well. By considering the random effects as missing values in the linear mixed model framework, a ℓ1-penalization on the fixed effects coefficients of the resulting log-likelihood is proposed. The optimization problem is solved via a multicycle Expectation Conditional Maximization (ECM) algorithm which allows for the number of parameters p to be larger than the total number of observations n and does not require the inversion of the sample n×n covariance matrix. The proposed algorithm can be combined with any variable selection method developed for linear models. A variant of the proposed approach replaces the ℓ1-penalization with a multiple testing procedure for the variable selection aspect and is shown to greatly improve the False Discovery Rate. Both methods are implemented in the MMS R-package, and are shown to give very satisfying results in a high-dimensional simulated setting.
Keywords: Linear mixed model; LmmLasso; Multiple hypothesis testing; High-dimension (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314002011
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:80:y:2014:i:c:p:209-222
DOI: 10.1016/j.csda.2014.06.022
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().