Stein’s method in high dimensional classification and applications
Junyong Park and
DoHwan Park
Computational Statistics & Data Analysis, 2015, vol. 82, issue C, 110-125
Abstract:
In the context of classification, it is a common phenomenon that high-dimensional data such as micro-array data consist of only a few informative components. If one uses standard statistical modeling and estimation procedures with entire information, it tends to overfit the data due to noise information. Therefore, some regularization conditions are required to select important information. A class of regularization methods is proposed through various shrinkage estimators using Stein’s identity. Since hard thresholding does not satisfy the condition of Stein’s identity, the proposed methods consider linear classifiers with soft, firm and SCAD thresholdings incorporating Stein’s identity and show some asymptotic properties. Simulation studies and applications to three different micro array data sets show that the proposed methods work well. Also the proposed methods are compared with some existing methods.
Keywords: Classification; Sparsity; High dimension; Stein’s estimator; Shrinkage (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314002412
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:82:y:2015:i:c:p:110-125
DOI: 10.1016/j.csda.2014.08.009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().