A new partially reduced-bias mean-of-order p class of extreme value index estimators
M. Ivette Gomes,
M. Fátima Brilhante,
Frederico Caeiro and
Dinis Pestana
Computational Statistics & Data Analysis, 2015, vol. 82, issue C, 223-237
Abstract:
A class of partially reduced-bias estimators of a positive extreme value index (EVI), related to a mean-of-order-p class of EVI-estimators, is introduced and studied both asymptotically and for finite samples through a Monte-Carlo simulation study. A comparison between this class and a representative class of minimum-variance reduced-bias (MVRB) EVI-estimators is further considered. The MVRB EVI-estimators are related to a direct removal of the dominant component of the bias of a classical estimator of a positive EVI, the Hill estimator, attaining as well minimal asymptotic variance. Heuristic choices for the tuning parameters p and k, the number of top order statistics used in the estimation, are put forward, and applied to simulated and real data.
Keywords: Bias estimation; Heavy right-tails; Heuristic methods; Optimal levels; Semi-parametric estimation; Statistics of extremes (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314002680
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:82:y:2015:i:c:p:223-237
DOI: 10.1016/j.csda.2014.08.017
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().