Modeling and forecasting duration-dependent mortality rates
Marcus C. Christiansen,
Andreas Niemeyer and
Lucia Teigiszerová
Computational Statistics & Data Analysis, 2015, vol. 83, issue C, 65-81
Abstract:
Mortality data of disabled individuals are studied and parametric modeling approaches for the force of mortality are discussed. Empirical observations show that the duration since disablement has a strong effect on mortality rates. In order to incorporate duration effects, different generalizations of the Lee–Carter model are proposed. For each proposed model, uniqueness properties and fitting techniques are developed, and parameters are calibrated to mortality observations of the German Pension Insurance. Difficulties with coarse tabulation of the empirical data are solved by an age–period-duration Lexis diagram. Forecasting is demonstrated for an exemplary model, leading to the conclusion that duration dependence should not be neglected. While the data shows a clear longevity trend with respect to age, significant fluctuations but no systematic trend is observed for the duration effects.
Keywords: Stochastic mortality; Duration dependence; Disability insurance; Lee–Carter model; Lexis diagram (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314002783
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:83:y:2015:i:c:p:65-81
DOI: 10.1016/j.csda.2014.09.017
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().