EconPapers    
Economics at your fingertips  
 

A Gaussian pseudolikelihood approach for quantile regression with repeated measurements

Liya Fu, You-Gan Wang and Min Zhu

Computational Statistics & Data Analysis, 2015, vol. 84, issue C, 41-53

Abstract: To enhance the efficiency of regression parameter estimation by modeling the correlation structure of correlated binary error terms in quantile regression with repeated measurements, we propose a Gaussian pseudolikelihood approach for estimating correlation parameters and selecting the most appropriate working correlation matrix simultaneously. The induced smoothing method is applied to estimate the covariance of the regression parameter estimates, which can bypass density estimation of the errors. Extensive numerical studies indicate that the proposed method performs well in selecting an accurate correlation structure and improving regression parameter estimation efficiency. The proposed method is further illustrated by analyzing a dental dataset.

Keywords: Gaussian estimation; Induced smoothing method; Pseudolikelihood; Repeated measurements; Working covariance matrix (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314003156
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:84:y:2015:i:c:p:41-53

DOI: 10.1016/j.csda.2014.11.002

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:84:y:2015:i:c:p:41-53