Bayesian threshold selection for extremal models using measures of surprise
J. Lee,
Y. Fan and
S.A. Sisson
Computational Statistics & Data Analysis, 2015, vol. 85, issue C, 84-99
Abstract:
Statistical extreme value theory is concerned with the use of asymptotically motivated models to describe the extreme values of a process. A number of commonly used models are valid for observed data that exceed some high threshold. However, in practice a suitable threshold is unknown and must be determined for each analysis. While there are many threshold selection methods for univariate extremes, there are relatively few that can be applied in the multivariate setting. In addition, there are only a few Bayesian-based methods, which are naturally attractive in the modelling of extremes due to data scarcity. The use of Bayesian measures of surprise to determine suitable thresholds for extreme value models is proposed. Such measures quantify the level of support for the proposed extremal model and threshold, without the need to specify any model alternatives. This approach is easily implemented for both univariate and multivariate extremes.
Keywords: Bayesian inference; Extremes; Generalised Pareto distribution; Posterior predictive p-value; Spectral density function; Surprise; Threshold selection (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314003429
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:85:y:2015:i:c:p:84-99
DOI: 10.1016/j.csda.2014.12.004
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().