Adjusted quasi-maximum likelihood estimator for mixed regressive, spatial autoregressive model and its small sample bias
Dalei Yu,
Peng Bai and
Chang Ding
Computational Statistics & Data Analysis, 2015, vol. 87, issue C, 116-135
Abstract:
Under flexible distributional assumptions, the adjusted quasi-maximum likelihood (adqml) estimator for mixed regressive, spatial autoregressive model is studied in this paper. The proposed estimation method accommodates the extra uncertainty introduced by the unknown regression coefficients. Moreover, the explicit expressions of theoretical/feasible second-order-bias of the adqml estimator are derived and the difference between them is investigated. The feasible second-order-bias corrected adqml estimator is then designed accordingly for small sample setting. Extensive simulation studies are conducted under both normal and non-normal situations, showing that the quasi-maximum likelihood (qml) estimator suffers from large bias when the sample size is relatively small in comparison to the number of regression coefficients and such bias can be effectively eliminated by the proposed adqml estimation method. The use of the method is then demonstrated in the analysis of the Neighborhood Crimes Data.
Keywords: Adjusted quasi-maximum likelihood estimator; Degrees of freedom loss; Mixed regressive; Spatial autoregressive; Small sample bias (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000328
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:87:y:2015:i:c:p:116-135
DOI: 10.1016/j.csda.2015.02.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().