EconPapers    
Economics at your fingertips  
 

Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses

Jakob Stöber, Hyokyoung Grace Hong, Claudia Czado and Pulak Ghosh

Computational Statistics & Data Analysis, 2015, vol. 88, issue C, 28-39

Abstract: Joint modeling of multiple health related random variables is essential to develop an understanding for the public health consequences of an aging population. This is particularly true for patients suffering from multiple chronic diseases. The contribution is to introduce a novel model for multivariate data where some response variables are discrete and some are continuous. It is based on pair copula constructions (PCCs) and has two major advantages over existing methodology. First, expressing the joint dependence structure in terms of bivariate copulas leads to a computationally advantageous expression for the likelihood function. This makes maximum likelihood estimation feasible for large multidimensional data sets. Second, different and possibly asymmetric bivariate (conditional) marginal distributions are allowed which is necessary to accurately describe the limiting behavior of conditional distributions for mixed discrete and continuous responses. The advantages and the favorable predictive performance of the model are demonstrated using data from the Second Longitudinal Study of Aging (LSOA II).

Keywords: R-vine; Pair copula construction; GLM; LSOA II (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000304
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:88:y:2015:i:c:p:28-39

DOI: 10.1016/j.csda.2015.02.001

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:88:y:2015:i:c:p:28-39