Orthogonality-projection-based estimation for semi-varying coefficient models with heteroscedastic errors
Yan-Yong Zhao,
Jin-Guan Lin,
Pei-Rong Xu and
Xu-Guo Ye
Computational Statistics & Data Analysis, 2015, vol. 89, issue C, 204-221
Abstract:
This paper is concerned with the estimation in semi-varying coefficient models with heteroscedastic errors. An iterated two-stage orthogonality-projection-based estimation is proposed. This method can easily be used to estimate the model parametric and nonparametric parts, as well as the variance function, and in the estimators the parametric part and nonparametric part do not affect each other. Under some mild conditions, the consistency, conditional biases, conditional variances and asymptotic normality of the resulting estimators are studied explicitly. Moreover, some simulation studies are carried out to examine the finite sample performance of the proposed methods. Finally, the methodologies are illustrated by a real data set.
Keywords: Asymptotic normality; Heteroscedastic errors; Orthogonality-projection; Semi-varying coefficient models (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731500095X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:89:y:2015:i:c:p:204-221
DOI: 10.1016/j.csda.2015.03.018
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().