EconPapers    
Economics at your fingertips  
 

Efficient maximum approximated likelihood inference for Tukey’s g-and-h distribution

Ganggang Xu and Marc G. Genton

Computational Statistics & Data Analysis, 2015, vol. 91, issue C, 78-91

Abstract: Tukey’s g-and-h distribution has been a powerful tool for data exploration and modeling since its introduction. However, two long standing challenges associated with this distribution family have remained unsolved until this day: how to find an optimal estimation procedure and how to make valid statistical inference on unknown parameters. To overcome these two challenges, a computationally efficient estimation procedure based on maximizing an approximated likelihood function of Tukey’s g-and-h distribution is proposed and is shown to have the same estimation efficiency as the maximum likelihood estimator under mild conditions. The asymptotic distribution of the proposed estimator is derived and a series of approximated likelihood ratio test statistics are developed to conduct hypothesis tests involving two shape parameters of Tukey’s g-and-h distribution. Simulation examples and an analysis of air pollution data are used to demonstrate the effectiveness of the proposed estimation and testing procedures.

Keywords: Approximated likelihood ratio test; Computationally efficient; Maximum approximated likelihood estimator; Skewness; Tukey’s g-and-h distribution (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001401
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:91:y:2015:i:c:p:78-91

DOI: 10.1016/j.csda.2015.06.002

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:91:y:2015:i:c:p:78-91