EconPapers    
Economics at your fingertips  
 

Identifying connected components in Gaussian finite mixture models for clustering

Luca Scrucca

Computational Statistics & Data Analysis, 2016, vol. 93, issue C, 5-17

Abstract: Model-based clustering associates each component of a finite mixture distribution to a group or cluster. Therefore, an underlying implicit assumption is that a one-to-one correspondence exists between mixture components and clusters. In applications with multivariate continuous data, finite mixtures of Gaussian distributions are typically used. Information criteria, such as BIC, are often employed to select the number of mixture components. However, a single Gaussian density may not be sufficient, and two or more mixture components could be needed to reasonably approximate the distribution within a homogeneous group of observations. A clustering method, based on the identification of high density regions of the underlying density function, is introduced. Starting with an estimated Gaussian finite mixture model, the corresponding density estimate is used to identify the cluster cores, i.e. those data points which form the core of the clusters. Then, the remaining observations are allocated to those cluster cores for which the probability of cluster membership is the highest. The method is illustrated using both simulated and real data examples, which show how the proposed approach improves the identification of non-Gaussian clusters compared to a fully parametric approach. Furthermore, it enables the identification of clusters which cannot be obtained by merging mixture components, and it can be straightforwardly extended to cases of higher dimensionality.

Keywords: Finite mixture of Gaussian distributions; Cluster analysis; Connected components; High density regions; Cluster cores (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000171
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:93:y:2016:i:c:p:5-17

DOI: 10.1016/j.csda.2015.01.006

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:5-17