A triplot for multiclass classification visualisation
Sugnet Gardner-Lubbe
Computational Statistics & Data Analysis, 2016, vol. 94, issue C, 20-32
Abstract:
Quadratic discriminant analysis is used when the assumption of equal covariance matrices for linear discrimination does not hold. The Canonical Variate Analysis biplot is used for graphical visualisation to accompany linear discriminant analysis. However, since class specific covariance matrix estimates are needed for quadratic discrimination the canonical transformation cannot be used. An alternative method of visually representing the discrimination and classification process is proposed: representing the sample points, classification regions based on quadratic discriminant analysis and including information on the variables. The methodology is further extended to other forms of multiclass classification and illustrated for support vector machines, classification trees, k-nearest neighbours and latent class analysis. In all these triplots three aspects are represented simultaneously, allowing for the representation of the relationships between samples and variables, relative to the classification regions.
Keywords: Biplots; Multiclass classification; Canonical variate analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001711
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:94:y:2016:i:c:p:20-32
DOI: 10.1016/j.csda.2015.07.014
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().